Quantitative structure-retention relationships of phenolic compounds without Hammett's equations

T. Hanai*
Health Research Foundation, Institut Pasteur 5F, Hyakumanben, Sakyo-ku, Kyoto 606-8225, Japan

Abstract

Retention times of phenolic compounds in a given pH eluent in reversed-phase liquid chromatography were predicted from dissociation constants derived from atomic partial charges and $\log P$-values calculated by a computational chemical method. The precision of the calculation of atomic partial charges by AM1 and PM3 methods of MOPAC ${ }^{\text {TM }}$ was evaluated. The atomic partial charges obtained by AM1 were the more acceptable. The atomic partial charges obtained from the hydrogen of the hydroxyl group included an ortho-effect, therefore an ortho-effect was added to the predicted $\mathrm{p} K_{\mathrm{a}}$ values. The precision of predicted retention factors obtained using predicted $\mathrm{p} K_{\mathrm{a}}$ values was similar to that using reference $\mathrm{p} K_{\mathrm{a}}$ values.

© 2002 Elsevier Science B.V. All rights reserved.
Keywords: Quantitative structure-retention relationships; Hammett's equation; Computational chemistry; Phenolic compounds

1. Introduction

Retention time in reversed-phase liquid chromatography can be predicted directly from octanolwater partition coefficient, $\log P$, and dissociation constant, $\mathrm{p} K_{\mathrm{a}}$ values [1]. First, $\log P$-values have been calculated by an empirical method, however, a calculation could not be made or the calculated error was large if the constants of the basic structure and/or substitutes are not known. A computational calculation simplified the $\log P$ prediction. Improving the precision of the computational chemical calculation of molecular properties results in a more accurate predicted $\log P$-value.

Dissociation constants, $\mathrm{p} K_{\mathrm{a}}$, have been predicted using Hammett's equations:

[^0]$\mathrm{p} K_{\mathrm{a}}=A+B \Sigma \sigma$
where A and B are constants for individual groups of compounds, and σ is Hammett's σ constant measured by liquid chromatography or titration [2]. The simplification of Hammett's equations has been studied. Previously, a new approach was proposed for the prediction of aromatic acid $\mathrm{p} K_{\mathrm{a}}$ values using computational chemistry [3]
\[

$$
\begin{aligned}
\mathrm{p} K_{\mathrm{a}}(\text { predicted })= & \mathrm{p} K_{\mathrm{a}}(\text { base compounds }) \\
& +\Delta \mathrm{p} K_{\mathrm{a}}(\text { substitute effect })
\end{aligned}
$$
\]

$\mathrm{p} K_{\mathrm{a}}$ (base compounds) was derived from the atomic partial charge of basic compounds, benzoic acid, phenylacetic acid, 3-phenylpropionic acid, mandelic acid, trans-cinnamic acid, indole-3-acetic acid, indole-3-butylic acid and phenol. The $\Delta \mathrm{p} K_{\mathrm{a}}$ (substitute effect) was derived from the difference in the atomic partial charge between derivatized and base
compounds. In this study, these equations were further modified for the quantitative structure-retention relationships (QSRR) of acidic compounds including aromatic acids and phenolic compounds in reversed-phase liquid chromatography.

2. Experimental

The computers used for the calculations were an upgraded Macintosh 8100/250 and a Toshiba Dynabook 4000X. The software used was CAChe ${ }^{\text {TM }}$ and Vlog P^{TM} from Fujitsu (Tokyo). The chemical calculations were carried out without modification of the program [4]. A modified CAChe-log $\mathrm{P}^{\text {TM }}$ calculation method was also used to study the performance in reversed-phase liquid chromatography. The Cricket-Graph ${ }^{\text {Tm }}$ program from Computer Associates (San Diego, CA, USA) was used for data handling. The retention factors of phenolic compounds and aromatic acids were measured previously by re-versed-phase liquid chromatography using an octadecyl-bonded silica gel $[5,6]$ and were used for the evaluation of computationally calculated values.

3. Results and discussion

The CAChe $\mathrm{p} K_{\mathrm{a}}$ calculation method was based on the correlation between the reference $\mathrm{p} K_{\mathrm{a}}$ values and the atomic partial charge calculated using MOPAC (molecular orbital package). First, atomic partial charge (apc) values for the hydroxyl group hydrogens and oxygens of phenolic compounds were correlated with measured $\mathrm{p} K_{\mathrm{a}}$ values and used for QSRR in reversed-phase liquid chromatography of phenolic compounds [5]. Later, two equations were derived from the atomic partial charge of the carboxyl group hydrogens of aromatic acids for the prediction of $\mathrm{p} K_{\mathrm{a}}$ values instead of using various Hammett's equations. The predicted $\mathrm{p} K_{\mathrm{a}}$ values were successfully used for QSRR of aromatic acids in reversed-phase liquid chromatography at various pH values of eluents $[7,8]$.

AM1 and PM3 calculation methods in MOPAC have been used for a variety of applications. Therefore, atomic partial charge was calculated using AM1 and PM3 in the CAChe program, and a
suitable calculation method was evaluated for the prediction of $\mathrm{p} K_{\mathrm{a}}$ values. The calculated atomic partial charges of eight standard compounds are summarized in Table 1. The correlations between the partial charge of hydrogen (H), oxygen (O) of the hydroxyl group and carbon (C) connected to hydroxyl or carboxyl groups were obtained as the following equations:

From the partial charge calculated
$(\mathrm{O}$ by PM3 $)=0.761 \times(\mathrm{O}$ by AM1 $)-0.065$,
$r^{2}=0.991, n=8$
$(H$ by PM 3$)=1.126 \times(H$ by AM 1$)-0.048$,

$$
r^{2}=0.992, n=8
$$

$(\mathrm{C}$ by PM3 $)=1.223 \times(\mathrm{H}$ by AM1 $)+0.003$,
$r^{2}=0.999, n=8$
The calculated atomic partial charges using PM3 are slightly larger except for the partial charge of oxygen. Such a difference is due to the precision of the atomic heat of formation according to Stewart [9] who developed the MOPAC ${ }^{T M}$ program. therefore, these atomic partial charges were correlated with measured $\mathrm{p} K_{\mathrm{a}}$ values [10] in Table 1
$\mathrm{p} K_{\mathrm{a}}=-209.611 \times(\mathrm{H}$ by AM1 $)+55.568$,

$$
\begin{equation*}
r^{2}=0.993, n=8 \tag{2}
\end{equation*}
$$

$\mathrm{p} K_{\mathrm{a}}=-183.885 \times(\mathrm{H}$ by PM3 $)+46.085$,
$r^{2}=0.976, n=8$
$\mathrm{p} K_{\mathrm{a}}=53.365 \times(\mathrm{O}$ by AM1 $)+21.412$,
$r^{2}=0.968, n=8$
$\mathrm{p} K_{\mathrm{a}}=68.728 \times(\mathrm{O}$ by PM3 $)+25.558$,
$r^{2}=0.937, n=8$
$\mathrm{p} K_{\mathrm{a}}=-21.982 \times(\mathrm{C}$ by AM1 $)+11.322$,
$r^{2}=0.862, n=8$
$\mathrm{p} K_{\mathrm{a}}=-17.985 \times(\mathrm{C}$ by PM3 $)+11.388$,
$r^{2}=0.864, n=8$

Table 1
$\mathrm{p} K_{\mathrm{a}}$ and atomic partial charges of standard compounds

Chemical	Atomic partial charge						
	Calculated using AM1				Calculated using PM3		
	O	H		C	O	H	C
Benzoic acid	-0.3171		0.2455	0.3515	-0.3069	0.2287	0.4316
Phenylacetic acid	-0.3211		0.2447	0.3128	-0.3059	0.2260	0.3813
Mandelic acid	-0.3262		0.2476	0.2779	-0.3099	0.2303	0.3448
trans-Cinnamic acid	-0.3145		0.2436	0.3379	-0.3053	0.2253	0.4201
Phenylpropionic acid	-0.3209		0.2440	0.3047	-0.3127	0.2274	0.3785
Indoleacetic acid	-0.3180		0.2424	0.3131	-0.3055	0.2241	0.3856
Indolebutylic acid	-0.3215		0.2430	0.3064	-0.3135	0.2271	0.3782
Phenol	-0.2134		0.2172	0.0779	-0.2273	0.1963	0.0985
	Predicted $\mathrm{p} K_{\mathrm{a}}$						
	$\mathrm{p} K_{\mathrm{a}}{ }^{\text {a }}$	O (AM1) ${ }^{\text {b }}$		H(AM1) ${ }^{\text {b }}$	O(PM3) ${ }^{\text {b }}$	H(PM3) ${ }^{\text {b }}$	
Benzoic acid	4.200		4.4900	4.1085	4.4654	4.0305	
Phenylacetic acid	4.334		4.2765	4.2762	4.5341	4.5270	
Mandelic acid	3.420		4.0043	3.6683	4.2592	3.7363	
trans-Cinnamic acid	4.376		4.6287	4.5068	4.5753	4.6557	
Phenylpropionic acid	4.691		4.2872	4.4229	4.0668	4.2696	
Indoleacetic acid	4.590		4.4419	4.7583	4.5616	4.8764	
Indolebutylic acid	4.781		4.2552	4.6325	4.0118	4.3247	
Phenol	10.020		10.0239	10.0405	9.9361	9.9894	

${ }^{\text {a }}$ From Ref. [8].
${ }^{\mathrm{b}}$ Calculation method in parentheses.

The above results indicated that partial charges of hydrogen and oxygen were suitable to predict $\mathrm{p} K_{\mathrm{a}}$ values of standard compounds. No significant difference was found between the AM1 and PM3 calculations. A term of Eq. (1) can be derived from the above results. Previously, the partial charge of hydrogen was shown to be suitable to predict the $\mathrm{p} K_{\mathrm{a}}$ value of aromatic acids [7], and that of oxygen was better than that of hydrogen for phenolic compounds. Which value derived atomic partial charge from hydrogen or oxygen is better for acidic compounds overall? The former calculation was achieved using version 3.7 of the CAChe system, while the recalculation was done using version 4.5 of the CAChe system. The partial charges of hydrogen and oxygen of 52 phenolic compounds were calculated using AM1 and PM3, and are listed in Table 2 with measured $\mathrm{p} K_{\mathrm{a}}$ values from Ref. [10].

The substitute effect ($\Delta \mathrm{pc}$) on atomic partial charge was balanced between the atomic partial charge of the substituted phenol and phenol ($\Delta \mathrm{pc}=$ pc (substituted phenol) - pc (phenol)). The substitute
effects of atomic partial charge were correlated with substitute effects of $\mathrm{p} K_{\mathrm{a}}$ values. The correlations between $\Delta \mathrm{p} K_{\mathrm{a}}$ ($\mathrm{p} K_{\mathrm{a}}$ of substituted phenol - $\mathrm{p} K_{\mathrm{a}}$ of phenol) and substitute effect $\Delta \mathrm{pc}$ were as follows, where $\mathrm{p} K_{\mathrm{a}}$ values were predicted using individual equations and atomic partial charges were calculated.
$\Delta \mathrm{p} K_{\mathrm{a}}=-154.136 \times(\Delta \mathrm{pc}$ O by AM1 $)-0.328$,
$r^{2}=0.900, n=38$
$\Delta \mathrm{p} K_{\mathrm{a}}=-204.529 \times(\Delta \mathrm{pc}$ H by AM1 $)+0.216$,
$r^{2}=0.905, n=38$
$\Delta \mathrm{p} K_{\mathrm{a}}=-170.059 \times(\Delta \mathrm{pc}$ O by PM 3$)-0.186$,
$r^{2}=0.892, n=38$
$\Delta \mathrm{p} K_{\mathrm{a}}=-333.387 \times(\Delta \mathrm{pc} H$ by PM 3$)+0.410$,
$r^{2}=0.758, n=38$
The atomic partial charge calculated by AM1

Table 2
Atomic partial charges calculated by computational chemical calculation and reference and predicted dissociation constants

Chemical	$\mathrm{p} K_{\mathrm{a}}{ }^{\text {a }}$	pc				$\begin{aligned} & \mathrm{p} K_{\mathrm{a}}^{\mathrm{b}} \\ & \mathrm{AM} 1 \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{p} K_{\mathrm{a}}^{\mathrm{b}} \\ & \mathrm{AM} 1 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{p} K_{\mathrm{a}}^{\mathrm{c}} \\ & \mathrm{AM} 1^{\mathrm{a}} \\ & \mathrm{H} \end{aligned}$
		$\begin{aligned} & \text { PM3 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { PM3 } \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \text { AM1 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & \text { AM1 } \\ & \text { H } \end{aligned}$			
Phenol	10.02	-0.2273	0.1963	-0.2472	0.2184	10.0239	10.0405	10.0405
2-Methylphenol	10.32	-0.2300	0.1989	-0.2490	0.2198	10.3013	9.7565	10.2025
3-Methylphenol	-	-0.2283	0.1962	-0.2472	0.2183	10.0239	10.0608	10.0608
4-Methylphenol	10.27	-0.2274	0.1958	-0.2464	0.2180	9.9006	10.1216	10.1216
2,3-Dimethylphenol	10.54	-0.2346	0.2013	-0.2499	0.2196	10.4400	9.7971	10.2431
2,4-Dimethylphenol	10.60	-0.2299	0.1984	-0.2488	0.2194	10.2705	9.8377	10.2837
2,5-Dimethylphenol	10.41	-0.2308	0.1989	-0.2490	0.2198	10.3013	9.7565	10.2025
2,6-Dimethylphenol	10.63	-0.2292	0.1991	-0.2498	0.2187	10.4246	9.9796	10.4256
3,4-Dimethylphenol	10.36	-0.2282	0.1957	-0.2509	0.2170	10.5941	10.3245	10.3245
3,5-Dimethylphenol	10.19	-0.2288	0.1958	-0.2499	0.2173	10.4400	10.2636	10.2636
2,3,4-Trimethylphenol	-	-0.2292	0.1963	-0.2532	0.2164	10.9486	10.4462	10.8922
2,3,5-Trimethylphenol	-	-0.2295	0.1965	-0.2516	0.2170	10.7020	10.3245	10.7705
2,3,6-Trimethylphenol	-	-0.2312	0.1993	-0.2552	0.2187	11.2568	9.9796	10.4256
2,4,6-Trimethylphenol	10.88	-0.2276	0.1988	-0.2520	0.2179	10.7636	10.1419	10.5879
2,3,4,5-Tetramethylphenol	-	-0.2356	0.2008	-0.2521	0.2184	10.7790	10.0405	10.4865
2,3,5,6-Tetramethylphenol	-	-0.2373	0.2021	-0.2536	0.2189	11.0102	9.9391	10.3851
2,3,4,5,6-Pentamethylphenol	-	-0.2378	0.2015	-0.2560	0.2179	11.3801	10.1419	10.5879
2-Ethylphenol	10.20	-0.2338	0.2025	-0.2555	0.2205	11.3030	9.6145	10.0605
3-Ethylphenol	9.90	-0.2282	0.1957	-0.2534	0.2166	10.9794	10.4056	10.4056
4-Ethylphenol	10.00	-0.2275	0.1956	-0.2529	0.2167	10.9023	10.3853	10.3853
4-tert-Butylphenol	-	-0.2267	0.1957	-0.2506	0.2172	10.5479	10.2839	10.2839
2-Chlorophenol	8.48	-0.2197	0.2030	-0.2416	0.2299	9.1609	7.7078	8.5998
3-Chlorophenol	9.02	-0.2244	0.1988	-0.2426	0.2222	9.3150	9.2697	9.2697
4-Chlorophenol	9.38	-0.2237	0.1981	-0.2438	0.2209	9.4999	9.5334	9.5334
2,3-Dichlorophenol	7.45	-0.2183	0.2040	-0.2385	0.2323	8.6831	7.2210	8.1130
2,4-Dichlorophenol	7.89	-0.2166	0.2043	-0.2379	0.2320	8.5907	7.2819	8.1739
2,5-Dichlorophenol	7.50	-0.2171	0.2045	-0.2370	0.2326	8.4520	7.1602	8.0522
2,6-Dichlorophenol	6.79	-0.2085	0.2061	-0.2278	0.2331	7.0342	7.0587	7.5047
3,4-Dichlorophenol	8.39	-0.2161	0.2005	-0.2385	0.2244	8.6831	8.8235	8.8235
3,5-Dichlorophenol	8.18	-0.2214	0.2006	-0.2377	0.2251	8.5599	8.6815	8.6815
2,3,4-Trichlorophenol	7.59	-0.2150	0.2050	-0.2376	0.2336	8.5445	6.9573	7.8493
2,3,5-Trichlorophenol	7.23	-0.2153	0.2055	-0.2334	0.2350	7.8972	6.6733	7.5653
2,3,6-Trichlorophenol	6.12	-0.2070	0.2071	-0.2252	0.2354	6.6335	6.5922	7.0382
2,4,5-Trichlorophenol	7.33	-0.2142	0.2055	-0.2242	0.2351	6.4794	6.6531	7.5451
2,4,6-Trichlorophenol	6.42	-0.2057	0.2073	-0.2244	0.2351	6.5102	6.6531	7.0991
3,4,5-Trichlorophenol	7.74	-0.2189	0.2014	-0.2341	0.2268	8.0051	8.3366	8.3366
2,3,4,5-Tetrachlorophenol	6.96	-0.2131	0.2061	-0.2307	0.2364	7.4811	6.3894	7.2814
2,3,5,6-Tetrachlorophenol	5.44	-0.2063	0.2083	-0.2221	0.2376	6.1558	6.1460	6.5920
2,3,4,5,6-Pentachlorophenol	5.26	-0.2044	0.2089	-0.2193	0.2390	5.7243	5.8620	6.3080
2-Bromophenol	8.44	-0.2155	0.2068	-0.2434	0.2309	9.4383	7.5050	8.3970
3-Bromophenol	9.03	-0.2242	0.1996	-0.2454	0.2217	9.7465	9.3711	9.3711
4-Bromophenol	9.36	-0.2238	0.1989	-0.2447	0.2217	9.6386	9.3711	9.3711
2,4-Dibromophenol	7.80	-0.2128	0.2078	-0.2402	0.2335	8.9451	6.9776	7.8696
2,6-Dibromophenol	6.60	-0.1987	0.2047	-0.2239	0.2363	6.4332	6.4096	6.8556
1,2-Dihydroxybenzene	-	-0.2064	0.1922	-0.2295	0.2133	7.2962	11.0750	11.5210
1,3-Dihydroxybenzene	9.81	-0.2281	0.1989	-0.2450	0.2219	9.6849	9.3306	9.3306
1,4-Dihydroxybenzene	10.35	-0.2270	0.1946	-0.2500	0.2163	10.4554	10.4665	10.4665
1-Hydroxynaphthalene	-	-0.2272	0.1994	-0.2525	0.2201	10.8407	9.6957	9.6957
2-Hydroxynaphthalene	-	-0.2271	0.1971	-0.2514	0.2186	10.6712	9.9999	9.9999
2-Hydroxyacetophenone	-	-0.2291	0.2026	-0.2487	0.2234	10.2551	9.0263	9.0263

Table 2. Continued

Chemical	$\mathrm{p} K_{\mathrm{a}}{ }^{\text {a }}$	pc				$\begin{aligned} & \mathrm{p} K_{\mathrm{a}}^{\mathrm{b}} \\ & \mathrm{AM} 1 \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{p} K_{\mathrm{a}}^{\mathrm{b}} \\ & \mathrm{AM} 1 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{c}} \\ & \mathrm{AM} 1^{\mathrm{a}} \\ & \mathrm{H} \end{aligned}$
		$\begin{aligned} & \text { PM3 } \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { PM3 } \\ & \text { H } \end{aligned}$	$\begin{aligned} & \text { AM1 } \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & \text { AM1 } \\ & \text { H } \end{aligned}$			
4-Hydroxybutylbenzoate	-	-0.2207	0.2004	-0.2418	0.2239	9.1917	8.9249	8.9249
4-Hydroxypropylbenzoate	-	-0.2207	0.2004	-0.2418	0.2239	9.1917	8.9249	8.9249
Benzoic acid	4.20	-0.3069	0.2287	-0.3170	0.2456	-	-	-
3-Methylbenzoic acid	4.26	-0.3072	0.2284	-0.3172	0.2452	-	-	-
4-Methylbenzoic acid	4.34	-0.3076	0.2282	-0.3177	0.2450	-	-	-
3,4-Dimethylbenzoic acid	4.40	-0.3073	0.2279	-0.3175	0.2447	-	-	-
3,5-Dimethylbenzoic acid	4.32	-0.3070	0.2281	-0.3171	0.2449	-	-	-
4-Ethylbenzoic acid	4.35	-0.3074	0.2282	-0.3177	0.2450	-	-	-
3-Chlorobenzoic acid	3.83	-0.3048	0.2300	-0.3144	0.2481	-	-	-
4-Chlorobenzoic acid	3.96	-0.3063	0.2298	-0.3161	0.2476	-	-	-
3,4-Dichlorobenzoic acid	3.50	-0.3045	0.2308	-0.3137	0.2497	-	-	-
3,5-Dichlorobenzoic acid	3.46	-0.3038	0.2312	-0.3132	0.2501	-	-	-
3-Bromobenzoic acid	3.86	-0.3041	0.2302	-0.3143	0.2484	-	-	-
4-Bromobenzoic acid	3.98	-0.3057	0.2303	-0.3152	0.2481	-	-	-

${ }^{a}$ From Ref. [10] for phenolic compounds and Ref. [7] for benzoic acids.
${ }^{\mathrm{b}}$ Predicted $\mathrm{p} K_{\mathrm{a}}$ values from atomic partial charges.
${ }^{\mathrm{c}}$ Predicted $\mathrm{p} K_{\mathrm{a}}$ values from hydrogen partial charges with ortho-effect.
seemed better for the prediction of $\mathrm{p} K_{\mathrm{a}}$ values. The results suggested that the atomic partial charge of either the hydrogen or oxygen of a hydroxy group can be used for the prediction of $\mathrm{p} K_{\mathrm{a}}$. The recalculated data for 12 benzoic acid derivatives are listed in Table 2 with their properties. The correlation between $\Delta \mathrm{p} K_{\mathrm{a}}$ and $\Delta \mathrm{pc}$ of benzoic acid derivatives are:
$\Delta \mathrm{p} K_{\mathrm{a}}=-189.852 \times(\Delta \mathrm{pc}$ O by AM1 $)+0.042$,
$r^{2}=0.940, n=12$
$\Delta \mathrm{p} K_{\mathrm{a}}=-160.438 \times(\Delta \mathrm{pc} H$ by AM1 $)+0.042$, $r^{2}=0.965, n=12$
$\Delta \mathrm{p} K_{\mathrm{a}}=-218.161 \times(\Delta \mathrm{pc}$ O by PM3 $)+0.024$, $r^{2}=0.875, n=12$
$\Delta \mathrm{p} K_{\mathrm{a}}=-267.958 \times(\Delta \mathrm{pc}$ H by PM3 $)+0.004$, $r^{2}=0.935, n=12$
where atomic partial charges of benzoic acid, 3methylbenzoic acid, 4-methylbenzoic acid, 3,4-dimethylbenzoic acid, 3,5-dimethylbenzoic acid, 4ethylbenzoic acid, 3-chlorobenzoic acid, 4-chlorobenzoic acid, 3,4-dichlorobenzoic acid, 3,5-dichlorobenzoic acid, 3-bromobenzoic acid and 4-bromo-
benzoic acid were used for the calculation. These results indicated that the apc of hydrogen calculated using AM1 was more acceptable than the others, therefore, the term $B \Sigma \sigma$ of Eq. (1) was derived by AM1 from the relation between $\Delta \mathrm{p} K_{\mathrm{a}}$ and $\Delta \mathrm{pc} \mathrm{H}$ and $\Delta \mathrm{pc} \mathrm{O}$ of phenolic compounds and benzoic acid derivatives of Eqs. (4)-(7).

$$
\begin{align*}
B \Sigma \sigma= & \left(-7.260 \times \mathrm{p} K_{\mathrm{a}}-129.947\right) \\
& \times \Delta(\text { partial charge of hydrogen }) \tag{8}
\end{align*}
$$

$$
\begin{align*}
B \Sigma \sigma= & \left(6.137 \times \mathrm{p} K_{\mathrm{a}}-215.626\right) \\
& \times \Delta(\text { partial charge of oxygen }) \tag{9}
\end{align*}
$$

Finally, Eqs. (2), (3), (8) and (9) were used to predict the $\mathrm{p} K_{\mathrm{a}}$ values of phenolic compounds. The predicted $\mathrm{p} K_{\mathrm{a}}$ values are listed in Table 2. The correlation between the predicted and measured $\mathrm{p} K_{\mathrm{a}}$ values are:
$\mathrm{p} K_{\mathrm{a}}($ predicted from pc of H$)=0.904$
$\times\left(\mathrm{p} K_{\mathrm{a}}\right.$ measured $)+0.676, r^{2}=0.904, n=38$
$\mathrm{p} K_{\mathrm{a}}($ predicted from pc of O$)=0.910$
$\times\left(\mathrm{p} K_{\mathrm{a}}\right.$ measured $)+1.133, r^{2}=0.908, n=38$

Furthermore, these predicted $\mathrm{p} K_{\mathrm{a}}$ values were used for QSRR in reversed-phase liquid chromatography. The retention factors of ionizable compounds in a given pH solution were predicted in reversed-phase liquid chromatography using the following equation [11]:
$k=\left(k_{\mathrm{m}}+k_{\mathrm{i}}\left[K_{\mathrm{a}}\right] /\left[\mathrm{H}^{+}\right]\right) /\left(1+\left[K_{\mathrm{a}}\right] /\left[\mathrm{H}^{+}\right]\right)$
where k_{m} and k_{i} are the retention factors of the molecular and ionized analytes, respectively, and K_{a} is the dissociation constant of analytes. The experimental data measured previously [5] were used to evaluate this new approach. The retention factors both measured and predicted data are summarized in Table 3. The correlation between predicted and measured retention factors at pH 8.49 in reversedphase liquid chromatography are: (1) predicted from the partial charge of oxygen calculated using the AM1 system:
k predicted $=0.854 \times(k$ measured $)+0.196$, $r^{2}=0.598, n=20$ at $k_{\mathrm{i}}=0$
k predicted $=0.873 \times(k$ measured $)+0.245$,
$r^{2}=0.641, n=20$ at k_{i} measured
and (2) predicted from the partial charge of hydrogen calculated using the AM1 system:
k predicted $=0.928 \times(k$ measured $)-0.119$,
$r^{2}=0.644, n=20$ at $k_{\mathrm{i}}=0$
k predicted $=1.001 \times(k$ measured $)-0.058$, $r^{2}=0.737, n=20$ at k_{i} measured

The correlation coefficients did not show high precision with this new approach. Therefore, the $\mathrm{p} K_{\mathrm{a}}$ values predicted using the partial charge of hydrogen were re-examined according to the ortho-effect. The ortho-effect for $\mathrm{p} K_{\mathrm{a}}$ values was 0.894 . The addition of the ortho-effect improved the correlation coefficient between measured and predicted $\mathrm{p} K_{\mathrm{a}}$ values to 0.973 from $0.904(n=38)$, and the equation was $\mathrm{p} K_{\mathrm{a}}$ predicted $=0.802 \times\left(\mathrm{p} K_{\mathrm{a}}\right.$ measured $)+1.940$.

Table 3
Retention factors measured and predicted at pH 8.49 in reversed-phase liquid chromatography

Chemical	$\exp ^{\text {a }}$	$\begin{aligned} & k_{\mathrm{i}}=\exp ^{\mathrm{b}} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & k_{\mathrm{i}}=0 \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & k_{\mathrm{i}}=\exp ^{\mathrm{b}} \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & k_{\mathrm{i}}=0 \\ & \mathrm{O} \end{aligned}$	$\begin{aligned} & k_{\mathrm{i}}=\exp ^{\mathrm{b}} \\ & \mathrm{H}^{\mathrm{c}} \end{aligned}$	$\begin{aligned} & k_{\mathrm{i}}=0 \\ & \mathrm{H}^{\mathrm{c}} \end{aligned}$	$k_{\mathrm{d}}=\exp ^{\mathrm{b}}$	$\underset{\mathrm{d}}{k_{\mathrm{i}}}=0$
Phenol	0.660	0.635	0.627	0.635	0.627	0.635	0.627	0.635	0.627
2-Chlorophenol	0.700	0.477	0.125	0.799	0.727	0.676	0.496	0.643	0.436
3-Chlorophenol	0.880	0.918	0.822	0.922	0.833	0.918	0.822	0.895	0.740
4-Chlorophenol	0.890	0.907	0.880	0.898	0.831	0.899	0.836	0.895	0.808
2,3-Dichlorophenol	0.310	0.145	0.062	0.774	0.740	0.420	0.359	0.181	0.102
2,4-Dichlorophenol	0.466	0.121	0.074	0.732	0.709	0.448	0.414	0.295	0.255
2,5-Dichlorophenol	0.390	0.109	0.059	0.658	0.631	0.391	0.353	0.170	0.123
2,6-Dichlorophenol	0.091	0.124	0.045	0.121	0.043	0.193	0.119	0.104	0.025
3,4-Dichlorophenol	0.920	1.057	0.910	0.993	0.812	1.057	0.910	0.849	0.590
3,5-Dichlorophenol	0.680	1.089	0.999	0.993	0.887	1.089	0.999	0.694	0.540
2,3,4-Trichlorophenol	0.140	0.128	0.051	0.988	0.951	0.397	0.333	0.270	0.200
2,3,5-Trichlorophenol	0.095	0.071	0.032	0.459	0.427	0.259	0.223	0.147	0.109
2,3,6-Trichlorophenol	0.042	0.064	0.023	0.066	0.025	0.102	0.062	0.050	0.008
2,4,5-Trichlorophenol	0.110	0.137	0.029	0.128	0.019	0.303	0.205	0.233	0.130
2,4,6-Trichlorophenol	0.051	0.081	0.031	0.073	0.022	0.133	0.084	0.069	0.018
2,3,4,5,6-Tetrachlorophenol	0.084	0.093	0.010	0.091	0.007	0.110	0.027	0.086	0.002
2-Bromophenol	0.750	0.448	0.090	0.901	0.861	0.646	0.428	0.660	0.451
3-Bromophenol	0.940	1.001	0.922	1.024	0.988	1.001	0.922	0.962	0.810
4-Bromophenol	0.970	0.985	0.894	0.996	0.944	0.985	0.894	0.985	0.891
2,4-Dibromophenol	0.650	0.074	0.049	1.231	1.225	0.340	0.320	0.301	0.280

[^1]The k-values recalculated using $\mathrm{p} K_{\mathrm{a}}$ values with an ortho-effect were related to the measured k-values in the pH 8.49 eluent:
k predicted $=0.833 \times(k$ measured $)+0.063$,
$r^{2}=0.812, n=20$ at $k_{\mathrm{i}}=0$
k predicted $=0.888 \times(k$ measured $)+0.114$,
$r^{2}=0.834, n=20$ at k_{i} measured
Furthermore, k-values were predicted using reference $\mathrm{p} K_{\mathrm{a}}$ values in Table 2. The correlation between predicted and measured k-values is:
k predicted $=0.817 \times(k$ measured $)-0.044$,
$r^{2}=0.877, n=20$ at $k_{\mathrm{i}}=0$
k predicted $=0.923 \times(k$ measured $)+0.003$,
$r^{2}=0.895, n=20$ at k_{i} measured

These results indicated that the precision of predicted retention factors using predicted $\mathrm{p} K_{\mathrm{a}}$ values from atomic partial charges was not high, but that using reference $\mathrm{p} K_{\mathrm{a}}$ values was not significantly high, too. This means that the new method can be used to create a separation condition in reversedphase liquid chromatography. The atomic partial charges of hydrogen are affected by the ortho-effect compared to those of oxygen, and differ with the version of the calculation system used. Improving the precision of the atomic heat of formation will improve the precision of atomic partial charges.
pH eluent in reversed-phase liquid chromatography were predicted from dissociation constants derived from atomic partial charges and $\log P$-values calculated by a computational chemical method. The precision of the calculation of atomic partial charges by AM1 of MOPAC were acceptable to the predicted $\mathrm{p} K_{\mathrm{a}}$ values of phenolic compounds and aromatic acids. The precision of predicted retention factors obtained using predicted $\mathrm{p} K_{\mathrm{a}}$ values was similar to that using reference $\mathrm{p} K_{\mathrm{a}}$ values.

References

[1] T. Hanai (Ed.), HPLC A Practical Guide, Royal Society of Chemistry, Cambridge, UK, 1999, p. 109.
[2] D.D. Perrin, B. Dempsey, E.P. Serjeant (Eds.), pKa Prediction for Organic Acids and Bases, Chapman and Hall, London, 1981.
[3] T. Hanai, H. Homma, J. Liq. Chromatogr. Relat. Technol. 25 (2002) 1661.
[4] CAChe ${ }^{T M}$ manual from Fujitsu, Tokyo, Japan.
[5] T. Hanai, K. Koizumi, T. Kinoshita, J. Liq. Chromatogr. Relat. Technol. 23 (2000) 363.
[6] T. Hanai, K. Koizumi, T. Kinoshita, R. Arora, F. Ahmed, J. Chromatogr. A 762 (1997) 55.
[7] T. Hanai, H. Homma, Abstract of 24th International Symposium on Capillary Chromatography, 2001, Las Vegas, NV, I.O.P.M.S. Kortrijk. Belgium, 2001.
[8] T. Hanai, J. Hubert, J. High Resolut. Chromatogr. Chromatogr. Commun. 7 (1984) 524
[9] J. Stewart, personal communication.
[10] L. Lepri, P.G. Desideri, D. Heimler, J. Chromatogr. 195 (1980) 339.
[11] D.J. Pietrzyk, C.-H. Chu, Anal. Chem. 49 (1977) 860.

4. Conclusion

Retention times of phenolic compounds in a given

[^0]: *Tel.: +81-75-712-4158; fax: +81-75-702-2141.
 E-mail address: thanai@attglobal.net (T. Hanai).

[^1]: ${ }^{\mathrm{a}} k$ from Ref. [5].
 ${ }^{\mathrm{b}} k_{\mathrm{i}}=$ experimental data from Ref. [5].
 ${ }^{\mathrm{c}}$ Used $\mathrm{p} K_{\mathrm{a}}$ with ortho-effect.
 ${ }^{\mathrm{d}}$ Used $\mathrm{p} K_{\mathrm{a}}$ calculated using Hammett's equations from Ref. [10].

